Wednesday, January 7, 2009
Paramagnetic Oxygen Analyzer
Within this category, the magnetodynamic or `dumbbell' type of design is the predominate sensor type. Oxygen has a relatively high magnetic susceptibility as compared to other gases such as nitrogen, helium, argon, etc. and displays a paramagnetic behavior. The paramagnetic oxygen sensor consists of a cylindrical shaped container inside of which is placed a small glass dumbbell. The dumbbell is filled with an inert gas such as nitrogen and suspended on a taut platinum wire within a non-uniform magnetic field. The dumbbell is designed to move freely as it is suspended from the wire. When a sample gas containing oxygen is processed through the sensor, the oxygen molecules are attracted to the stronger of the two magnetic fields. This causes a displacement of the dumbbell which results in the dumbbell rotating. A precision optical system consisting of a light source, photodiode, and amplifier circuit is used to measure the degree of rotation of the dumbbell. In some paramagnetic oxygen sensor designs, an opposing current is applied to restore the dumbbell to its normal position. The current required to maintain the dumbbell in it normal state is directly proportional to the partial pressure of oxygen and is represented electronically in percent oxygen. There are design variations associated with the various manufacturers of magnetodynamic paramagnetic oxygen analyzer types. Also, other types of sensors have been developed that use the susceptibility of oxygen to a magnetic field which include the thermomagnetic or `magnetic wind' type and the magnetopneumatic sensor. In general, paramagnetic oxygen sensors offer very good response time characteristics and use no consumable parts, making sensor life, under normal conditions, quite good. It also offers excellent precision over a range of 1% to 100% oxygen. The magnetodynamic sensor is quite delicate and is sensitive to vibration and/or position. Due to the loss in measurement sensitivity, in general, the paramagnetic oxygen sensor is not recommended for trace oxygen measurements. Other gases that exhibit a magnetic susceptibility can produce sizeable measurement errors. Manufacturers of the paramagnetic oxygen analyzer should provide details on these interfering gases.
Labels:
Paramagnetic Oxygen Analyzer
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment